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The nonlinear equations describing phase-ordering dynamics can be closed by assuming the ex-
istence of an underlying Gaussian stochastic field which is nonlinearly related to the observable
order-parameter field. We discuss the relation between different implementations of the Gaussian
assumption and consider the limitations of this assumption for phase-ordering dynamics. The fact
that the different approaches give different results is a sign of the breakdown of the Gaussian as-
sumption. We discuss both the nonconserved and conserved order-parameter cases. We demonstrate
that the Gaussian assumption cannot describe the large length-scale behavior in the latter case.

PACS number(s): 64.60.Cn, 64.75.4+g, 64.70.Kb

I. INTRODUCTION

After a system is quenched from the disordered to the
ordered phase, domains of the ordered phases form and
grow. At late stages, it is empirically known that the
phase-ordering process obeys dynamical scaling, i.e., the
spatial distribution of domains can be described by a
single time-dependent length L(t). On this length scale,
the phase-ordering process depends only on a few general
features of the dynamics. Due to the inherently nonlin-
ear nature of the dynamics, understanding the phase-
ordering process remains a challenge [1-3]. Analytic
progress has been confined to the case of O(n) compo-
nent order parameter in the limit of large n [4-6]. For
n < d, where d is the spatial dimension, topological de-
fects become important and progress has been limited
to dimensional analysis of the defect motion [2,7,8] and
methods by which the nonlinear equations describing the
dynamics are “closed” (closure approximations) [9-14].
Some progress is achieved by assuming that there exists
an underlying Gaussian field which is nonlinearly related
to ¢(r,t) [12-14]. v

In this paper, we will explore the reliability of clo-
sure approximations based on the assumption of an un-
derlying Gaussian stochastic field for phase-ordering dy-
namics both with and without conservation of order pa-
rameter. We clarify the relations among various ap-
proaches and the limitations of the Gaussian assump-
tion. In particular, we discuss the interface approach for
the non-conserved order parameter (NCOP). We clarify
misunderstood points in Ref. [13] and more importantly,
we discuss this in a manner easily generalizable to the
conserved-order-parameter case. For the NCOP case we
demonstrate that the various approaches use exactly the
same assumptions. Thus the discrepancies among the
results by different approaches indicate the limitation of
the Gaussian approximation. Approximate relations be-
tween these approaches have also been discussed by Bray
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and Humayun [15] very recently.

The interface approach is readily generalizable to the
conserved-order-parameter case. For this case, the in-
terface approach gives a real-space correlation function
which agrees well with the empirical result up to its sec-
ond zero. However, the Gaussian approach is more fun-
damentally flawed in its description of the long-distance
correlations in that, in order to reproduce the empirically
observed scattering intensity, the Gaussian field must
have a negative spectral density at small wave number.
Therefore the Gaussian approximation cannot be used to
recover the entire form factor.

In Sec. II we discuss the relations among the ap-
proaches for nonconserved-order-parameter case. In
Sec. III we study the approximate Gaussian nature of
u(r,t) through direct numerical updating of the evolu-
tion equation for u. We find that the single-point prob-
ability distribution function P(u) decays as a Gaussian
at the tails but decays slower than a Gaussian function
near © = 0. In Sec. IV we present our findings for the
conserved-order-parameter case.

II. NONCONSERVED ORDER PARAMETER

The simplest model of phase ordering without con-
servation of order parameter is the time-dependent
Ginzburg-Landau (TDGL) equation

F) 2
Y o us)+ SV,
where £ is the interfacial width, ¢(r,t) is the scalar order
parameter, and pg() is the portion of the local chem-
ical potential without gradient terms. We assume pp is
an odd function of 9, the equilibrium values of ¥ are +1,
and that there exist a stationary planar interface solu-
tion f(z), obeying 0 = —up(f(z)) + (¢2/2)d?f/dz%. The
exact form of f(z) is unimportant except that f(z) in-

(2.1)
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creases monotonically from —1 to 1 over length £ [13,16].
This universality is closely related to the universality in
the dispersion relation around the interface [17].

At late times, the domain growth is determined by the
motion of the sharp interfaces. The interface dynamics
can be derived from the TDGL [7,8,18],

62
Un(r,t) = — > K(r,t).

- (2.2)

The normal velocity of the interface v,, is positive if the
“minus” phase moves into the “plus” phase, the normal
fi points into the plus phase, and the local curvature
x = V -1 is positive for a bump of the minus phase into
the plus phase.

These equations are the basis of different analytic ap-
proaches. Ohta, Jasnow, and Kawasaki [12] used the
interface dynamics (2.2) while Oono and Puri [13] and
Mazenko [14] started with the full bulk dynamics (2.1).
In the bulk approach, an auxiliary field u is introduced
through ¥ = f(u), and is assumed to be Gaussian. One
then seeks a closure approximation in terms of correla-
tions of u (bulk-u approach) [13] or in terms of correla-
tions of ¢ (bulk-¢ approach) [14]. We concentrate on the
interface approach as a similar method can be attempted
for the conserved order parameter case. We clarify mis-
understood points in Ref. [13] and show that a suitably
corrected interface and bulk-u approach uses identical
assumptions. The discrepancy between the two bulk ap-
proaches then is a test of the reliability of the Gaussian
assumption.

The essence of the interface approach is to write the
interfacial dynamics using an indicator field u(r,t) [12].
The indicator field is a smooth function such that v > 0
(u < 0) in the plus (minus) phase and v = 0 at the in-
terface. In terms of u, Eq. (2.2) becomes O;u — |Vu|V -
(Vu/|Vu|) = 0. It has recently been proven that, in-
dependent of the choice of u in the bulk, this equation
correctly describes the dynamics of infinitesimally thin
interfaces driven by mean curvature [19,20]. However,
further progress requires the preaveraging of the dynam-
ical equations via a random orientation assumption for
the interfaces [12]. Unfortunately, the results obtained
by the preaveraged version, 8;u = (d — 1)V2?u/d, where
d is the spatial dimensionality, depends crucially on the
choice of u in the bulk, so some auxiliary condition on
the meaning of v must be imposed. The original inter-
pretation was that |u| is the distance to the interface so
that u must grow as L(t). However, it was found that
u decays as t~1/2. These difficulties motivated the bulk
approach in Ref. [13]. Here we emphasize a derivation
without these difficulties as a similar approach will be
attempted for the conserved-order-parameter case.

We define u in the same manner as Ohta, Jasnow,
and Kawasaki (OJK) enforcing the condition Vu(r,t) =
A(r,t) near v = 0 [12,13]. In terms of u, the interfacial
dynamics [Eq. (2.2)] is

Ou £ 2
5= 2 Veu. (2.3)

However, Eq. (2.3) can only hold at v = 0, since, if it

were true in the bulk, the condition that |Vu| = 1 near
the interface would be violated [13]. We assume that this
condition can be met by extending Eq. (2.3) into the bulk
by adding a “Lagrange multiplier function” P(u, Vu) to
the right-hand side of Eq. (2.3),

u 2 ~

%—t = % [V2u+ P(u, Vu)} .
The function P has the following properties:
P(u, Vu)|u=0 = 0, since Eq. (2.3) must be recovered at
u = 0. Due to the symmetry of the TDGL, P(u, Vu) is
an odd function of u and an isotropic function of deriva-
tives of u. Since the interface dynamics depends only on
local properties of the interface, P(u, Vu) is assumed to
be local, i.e., P(u, Vu) depends only on a finite num-
ber of gradients of u. The two-point correlation function
(uiuz) obeys

(2.4)

duws) _ €
oty 2

(VI {uruz) + (f’(ul, Viuy)ug)],  (2.5)

where u; = u(r;,t;) and t; # t;. Note that the local
constraint |Vu| = 1 at the interface forces (u?) to grow
as L%, where L; = L(t;).

Now, assume u is a Gaussian stochastic field. For
any Euclidean symmetric Gaussian stochastic field and
P with the conditions above, (P(u1, Vu1) uz) has a sim-
ple form:

(P(u1, Vuy) ug) = p(t1) (wauz ),

since p(t) depends only on (u?) and (|Vu|). Thus the
correlation function obeys

(2.6)

I uu
) _ e (92w ) +pl) V(i) (27)
where we have assumed t; = t; = t. The Gaussian

approximation means that the detailed local constraint
|Vu| = 1 is no longer met, but is replaced by a global
constraint (u?) ~ L2. In the scaling limit, this requires
that £2p(t) = (d+2)/(2t). The same result was obtained
in Ref. [13] to enforce the condition that &/L(t) ~ ¢t~/2.
One difference between the above and the result in Ref.
[13] is the presence of a factor of (d —1)/d in front of the
diffusive term, which is also present in the OJK approach.
The reason for this difference is the lack of the local con-
straint |Vu| = 1 at the interface. However, there is also a
difference in the derivation. In OJK one makes a random
interface assumption which results in u being a Gaussian
variable while, in the above discussion, the Gaussian as-
sumption is made directly rather than being the result
of a secondary assumption. We take this more direct ap-
proach in our analysis of the conserved-order-parameter
approach in Sec. IV.

Let us now discuss the bulk approaches. We demon-
strate that the interface and bulk-u approaches are ex-
actly equivalent. The approximate relation between
these approaches has also been recently discussed by Bray
and Humayun [15]. In terms of the auxiliary field u, ap-
plication of the chain rule to the TDGL gives
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Bt [Vt (- Ve Q@] (29)
where Q(u) = —(df/du)"'d’f/du®. In general,

Q(u) is an odd function of u and Q(u) approaches
dup/dly,, sgn(u) in the limit & — 0. Note that
this is exactly of the form given by Eq. (2.4). In fact
(1 — |Vu|?) Q(u) is the Lagrange multiplier function of
the interface approach. Therefore it is clear that the
bulk-u and interface approaches are exactly equivalent.
We complete the calculation to show that p(t) in Eq.
(2.6) can be obtained explicitly. Assuming that u is a
Gaussian stochastic field, for general Q, the { u;u,) obeys

6(U1U2> —

5 €% [V*(uruz) + p(t)(waus)]

(2.9)
where t; = t; = t. It is clear that in the scaling limit this
equation must be the same as that obtained in the in-
terface approach. [Bray and Humayun have also recently
pointed out the equivalence for a particular form of Q(u),
which can only come about from a nonanalytic free en-
ergy [15]. However, we do not expect this distinction to
be important.] We can choose Q so that the Gaussian
integrals are simplified

+oo 2(1.)2

Q(u)=£ do— exp (—5 —iwu). (2.10)

—Oo0o

That is, Q(u) is the sign function mollified by a Gaussian
function. Now we can explicitly perform the Gaussian
average to obtain

1-(|Vuf?)
(€ + (u2))/2

and, in the limit of (u2) > ¢2,

p(t) = , (2.11)

= E arcsin (uruz)
(prva) = Lo (ot 7 )

(2.12)

Thus we are left with a closed equation for (uju;) and
a closed ordinary differential equation for p(t). The only
meaningful solution p(t) of the latter equation behaves
asymptotically just as describe above. The scaling result
can also be obtained giving the same asymptotic result
as discussed in the interface approach [21].

In the bulk-1 approach the auxiliary field u(r,t) is in-
troduced in the same way as in the bulk-u approach.
Using the TDGL one obtains an expression for (i)
using the assumption that u is a Gaussian stochastic
field. This approach was applied by Mazenko [14] for
the nonconserved-order-parameter approach.

Therefore the approximations made in the bulk-u, in-
terface, and bulk-iy approaches use exactly the same as-
sumptions. However, these methods produce qualita-
tively different results, such as, for the asymptotic decay
two-time correlation function [22-25]. These discrepan-
cies are indications of the failure of this assumption of an
underlying Gaussian field.
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III. NUMERICAL RESULTS

In the previous discussion we have shown that {u(r,t)}
is not a Gaussian random field. However, we have also
argued that this assumption may be a reasonable first
approximation. In this section we study the statistics
of {u(r,t)} directly through a numerical updating of Eq.
(2.8). As noted previously, no approximations are needed
to proceed from Eq. (2.1) to Eq. (2.8) so this is equivalent
to a simulation of the TDGL equation.

For numerical efficiency we choose Q(u) = 2 if u > 1,
Qu) = 2uifl >u > -1, and Qu) = -2 ifu <
—1. This effectively approaches 2 sgn(u) in the limit
of L(t) > 1. We discretize the system with mesh size
6z = 1.0 and time steps 6t = 0.05. To reduce lattice
effects we used a sphericalized Laplacian as described in
Ref. [16]. For these large time and space steps the up-
date corresponds to a cell dynamical system (CDS) [16].
The simulation was performed on 800 x 800 lattices with
periodic boundary conditions, and repeated on 400 x 400
lattices to check for finite size effects. The results for
n = 400 and n = 800 begin to deviate at about t = 400
indicating that the data for n = 800 is not affected by
size problems. An average was taken over 18 independent
initial conditions for the larger lattice.

Figure 1 shows a plot of L(t)? vs (u(r,t)?) for t =
25,50,100,200, and 400. For L(t) we use the inverse
interfacial density. The line has a slope of unity. We
see that L(t)? ~ (u(r,t)?), in agreement with the argu-
ments above. We next calculate the single point prob-
ability function P(u,t) for each time. Figure 2 shows
In P(u?/(u?)) vs u?/(u?) for t = 50,100,209, and 400.
It is clear that the probability distribution scales during
this time range. We also observe that the tail of the prob-
ability distribution decays in a Gaussian manner but the
region near u = 0 is flatter than that for the Gaussian
distribution. Figure 3 shows the same data plotted with
—In[—1n P(u?/(u?))] vs Inu?/(u?). The straight line has
a slope of 2. Figure 4 shows the flatness (u*)/((u?)?).
The times are the same as that of Fig. 1 plus the point.
at ¢ = 0. The flatness is 3 at ¢ = 0 since the initial

10
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FIG. 1. A log-log plot of (u?) vs L(t)? from the 800 x 800
simulations. The solid line is a slope of 1. The statistical
uncertainties are smaller than the symbol sizes. L(t) is the
inverse interfacial density. As predicted by the interface ap-
proach, (u?) grows as L%. A fit to the form (u?) = aL? 4 ¢
gives b = 1.03.
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FIG. 2. The single point probability distribution
In P(u?/(u?),t) versus u?/(u?) for t = 50,100,200, and 400.
Representative error bars are shown. This plot indicates that
the tail of the distribution function decays as a Gaussian func-
tion, but there is a regime for u?/(u?) < 0.5 which decays
slower than predicted by the tails.

distribution is Gaussian. For larger times the flatness is
somewhat less than that expected for a Gaussian distri-
bution.

From our numerical result the single point probability
distribution of u is approximately Gaussian at the tails.
However, the deviation from Gaussian behavior near u =
0 is very important since the location of the interface is
at u = 0, which we have assumed controls the dynamics.
We also note that we have only looked at the single point
distribution function. To test the full Gaussianness of
{u(r,t)} we must check also the two-point and two-time
distributions, etc.

IV. CONSERVED ORDER PARAMETER CASE

In this section we show that the interface approach
discussed in the preceding sections can be readily ex-
tended to phase ordering dynamics with conserved or-
der parameter (spinodal decomposition) [26,27]. This
approach leads to a very good fit of the real-space cor-
relation function up to the second zero of the correla-
tion function. That is, the Gaussian assumption can give
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FIG. 3. The same data as in Fig. 2 plotted in the form
—In[— In P(u?/(u?),t)] vs In(u?/(u?)). The line has a slope
of —1 indicating the Gaussian nature of the tail.
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FIG. 4. The flatness (u*)/(u®)? versus time. The distribu-
tion for the initial condition is Gaussian so that at ¢t = 0 the
flatness is 3. For larger times the flatness is somewhat smaller
than that of a Gaussian distribution.

good agreement with experiment for small to intermedi-
ate distances. However, we also show that the Gaussian
approximation is fundamentally flawed in that it cannot
correctly describe the long distance, small-wave-number
behavior. Using a fitting of the empirical data, we find
that Gaussian assumption requires that the spectral den-
sity of the Gaussian field be negative at small wave num-
bers.

The bulk 9 closure was the first closure method used
to study system with conserved order parameter [26,27].
An important difficulty with the bulk ¢ approach is that
one cannot simply use the nonlinear mapping ¥(r,t) =
f(u(r,t)) to define the indicator field. This is because the
condition that [¢(r,t)| < ¥eq is not met and therefore the
mapping is not invertible. This is easily seen since, for
the conserved case, local equilibrium near the interface
requires that the deviation of ¢ from its planar interface
value is proportional to the local curvature. However, an
indicator field can still be introduced using

P(r,t) = f(u(r,t)) + &(r, t),

where the ¢ field accounts for the deviation from the pla-
nar interfacial profile. This method has been discussed
by Mazenko [28].

The interface approach has the important advantage
that no additional deviation field ¢ is needed. Using
the methods and motivation discussed in Sec. II we now
show that the interface approach is easily extended to the
conserved-order-parameter case. We note that a Gaus-
sian approach based on the linear dispersion relation for
an almost planar interface have been discussed by Ohta
and Nozaki [29]. They found a reasonable fit to the scat-
tering intensity (except at low k). However, their ap-
proach fixes the growth exponent to be 1/3 by using the
linear dispersion relation. In contrast, we will show that
that the interface approach, along with the requirement
of scaling, automatically gives L(t) ~ t!/3.

Our starting point is the interface dynamic equation

in terms of the u field
G * 6(u)Opu = Vu, (4.1)

where G is the Green’s function for the Laplacian, i.e.,
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G = —V~2 [30] and * indicates the convolution. As in
the nonconserved case, this equation is correct only at
the interface. We assume the following bulk extension of
the interface equation:

G * §(u)du = JV3u + g, (4.2)
where J is a functional of u such that J = 1 at the inter-
face and ¢ is a functional of u with ¢ = 0 at the interface.
The functional ¢ must be nonlocal, since the left-hand
side of Eq. (4.2) is nonlocal, but V2¢g must be a local
function of u. This extension into the bulk is motivated
by an analogous idea behind Eq. (2.4). Applying V2 to
Eq. (4.2), and assuming that u is a Gaussian stochastic
field, we find (after some straightforward algebra)

1 1

Ema,g(r, t) = — R(t)V4g(r,t) — V2Q(t)g(r,t)

+ P(t)g(r 1),

where g(r,t) = (u(r,t)u(0,t)) and P,Q and R are
yet unspecified functions of time only. The last term,
P(t)g(r,t), is due to the nonlocality of g. We now assume
that there is a scaling regime and determine the forms of
R(t), Q(t), and P(t) necessary for a scaling solution to
exist. The definition of u requires that (u?) ~ L? for
large times, so that, in the scaling limit, g(r,t) must be
of the form

(4.3)

g(r,t) = L(t)*g(r/L(t),

where g(0) = 1. Rescaling ¢ = r/L(t), we rewrite Eq.
(4.3) as

(4.4)

A(20() - 232 = - ROV'(a) - L V*Q00(c)
+ L) P(t)g(a),

where A = L'(t)L(t)?/2v/2n, which must be time-
independent asymptotically. The coefficients R, L32Q,
and L*P must converge to nonzero constants in the
t — oo limit; if they diverge or vanish, we obtain phys-
ically absurd results. Hence, asymptotically Eq. (4.5)
becomes

(4.5)

A (2g(z) - d—fiii)) + Vig(z) + AV?g(z) - Bg(z) =0,

(4.6)

where we have rescaled A to get rid of the numerical
coefficient in front of the V% term, and A and B are
constant. The requirement that g(0) is finite fixes B to
be B = (2 4+ d)A. Hence, in the k space, we arrive at
d

21% = (—k* + k)g,
where A, which must be positive, has been scaled out and
A remains an unspecified constant. The resultant equa-
tion is similar to the Ohta-Nozaki equation [29], although
in our case L ~ t!/3 follows from our starting point of
the interface equation. We note that the derivation of
Eq. (4.7) is straightforward if we assume the existence of
a scaling form [31].

(4.7)

2697

Using Eq. (4.7) we obtain C(r/L(t)) = (¢(r,t)¥(0,t))
and fit it to an empirically obtained C(r/L(t)) from a
very accurate three dimensional CDS simulation of spin-
odal decomposition [32]. The best fit is obtained for
A = 0.013. Figure 5 shows that the fit is very good
up to approximately the second zero of C(z). This is
further shown in the inset in which z2C(z) is plotted to
show that goodness of the fit is not simply because C(z)
is small at larger z. However, for larger r/L the devia-
tion from the Gaussian closure result becomes significant.
This is particularly apparent in the scattering intensity.
In this case there is a very good fit for ¢ > 0.5, but the
conservation law is violated and Sk—¢ # 0.

We now ask whether the fact that the interface ap-
proach does not describe the low k behavior correctly is
due to details of the interface approach or is due to a more
fundamental problem with the assumption of an under-
lying Gaussian field. (With the B approach Si—o =0,
but Sy ~ k2 [28] for small k rather than S; ~ k*, as
is observed [32,33].) Note that Eq. (2.12), the relation
between (¢1)) and (uu), is independent of the dynamics
and is true as long as u(r, t) is a Gaussian stochastic field.
Therefore, ignoring terms of order £/L, we have

C(r,t) = (Y192) = —f;arcsin <(u1u2)> . (4.8)

(u?)
(This result also holds for the By approach since the ad-
ditional deviation field ¢ is of order 1/L. Its direct effects
in the correlation function can be neglected in the scaling
limit.) Therefore, assuming u is a Gaussian field, we can
invert this relation to obtain (ujuz)/(u?) from the em-
pirically obtained C(r,t) [32]. Figure 6 shows the spec-
tral density (ug(t)u—g(t)) obtained in this manner using
C(r,t) from the three dimensional CDS simulation [32].
The spectral density (ug(t)u_x(t)) becomes significantly
negative at small wave numbers ¢ = kL(t) < 0.5. [The
peak of (r(t)y_x(t)) occurs at approximately ¢ = 1.]
Since the spectral density must be positive definite, we
conclude that the Gaussian closure approaches are inher-
ently flawed in describing the large length-scale behavior

1.0 :
5 .
/,\
x -~
5 . f
—_ 05 N>< \\/ 1
0]
-5 L
0 10 20
0.0 \/m
0 5 10 15 20

x=r/L

FIG. 5. Plot of the real-space correlation function C(r,t)
from the 3D CDS simulations (dash line) vs the result us-
ing the Gaussian closure (solid line). The inset shows
(r/L)?C(r,t) for the same range of r/L. The fit is very good
up to the second zero in the correlation function.



2698 CHUCK YEUNG, Y. OONO, AND A. SHINOZAKI 49

2

<uu,>/<u>

FIG. 6. Plot of the spectral density (uk(t)u—x(t)) from the
(Yr(t)_r(t)) obtained under the Gaussian assumption from
the 3D spinodal decomposition simulation (dashed line). The
inset is a magnification of the spectral density for values of ¢
just above the peak. There is a violation of positivity both
for ¢ < 0.5 and 1.5 < ¢ < 4, indicating that the Gaussian
assumption is invalid for the conserved-order-parameter case.

of phase-ordering dynamics with conservation of order
parameter. In addition, as shown in the inset of Fig.
6, there is also a violation at positivity in the very im-
portant range of ¢ from approximately 1.5 to 4. This
corresponds to the structure at wave numbers just above
that of the peak of the scattering intensity.

To summarize, the interface approach is readily ex-
tendable to the conserved-order-parameter case. The in-
terface dynamics, along with the assumption of scaling,
leads to a growth exponent of 1/3. The resulting Gaus-
sian closure leads to a very good fit of the correlation
function for small and intermediates lengths. However,
the Gaussian assumption cannot correctly describe the
large length-scale behavior since, in order to reproduce
the empirically observed results, the spectral density of
the Gaussian field must be negative at small wave num-
ber. In this sense, a correct description of the large
length-scale behavior of the correlation function and scat-
tering intensity would require that the Gaussian field be
unphysical.

V. DISCUSSION AND SUMMARY

We have discussed the reliability of the underlying
Gaussian assumption in all the existing closure approx-
imations used in phase ordering dynamics both with
and without conservation laws. For the nonconserved
case, we have clarified the relation between different ap-
proaches and demonstrated that the interface and bulk
u approaches are exactly equivalent. We have demon-
strated that the interface approach can be extended in
an analogous manner to the conserved-order-parameter
case.

For the nonconserved-order-parameter case one can ex-
plicitly obtain the equation for the underlying field wu.
We numerically integrate this equation and show that
the single-point distribution function P(u) is decays in
a Gaussian manner at the tails but flatter near u = 0.
Therefore although P(u) is approximately Gaussian it
has important corrections as the interface dynamics are
controlled by the region near u = 0.

Using the arguments for the nonconserved-order-
parameter case, we extend the interface approach to the
conserved-order-parameter case. We show that this leads
to an nontrivial fit of the correlation function C(r,t) and
scattering intensity Sk(t) for small to moderate scaled
distances r/L(t). However, we find that the Gaussian
approach is more fundamentally flawed in its description
of the long distance correlations. Therefore the Gaus-
sian approximation cannot be used to recover the entire
empirically observed form factor.
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